Modulbezeichnung	Energy Storage and Fuel Cells
Modulbezeichnung (eng.)	Energy Storage and Fuel Cells
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Grundlagen der Verfahrenstechnik (N) oder Thermo- und Fluiddynamik (M)
Verwendbarkeit	BEEEE, BNPT, BNPTPV
Prüfungsart und -dauer	R+(HA/K1)* + EA (PL + SL)
Lehr- und Lernmethoden	Vorlesung und Seminar
Modulverantwortliche(r)	G. Illing

Qualifikationsziele

Die Studierenden können am Ende des Semesters ...

- · zwischen den Energieformen bei der Energiespeicherung und Energieumwandlung (chemisch, elektrisch, potentiell, kinetischer, thermischer) differenzieren
- das erlangte Wissen aus den Bereichen Brennstoffzellen und Speicherung von Energie sowie Umwandlung von chemischer Energie in elektrische Energie auf den praktischen Einsatz in der Technik beziehen
- technische Ausführungs- und Einsatzvarianten anhand von überschlägigen Berechnungen auswählen und auslegen
- · verwendete Materialen, Betriebsmodi etc., beschreiben und hinsichtlich der Effizienz beurteilen und Auslegungsvarianten diskutieren

indem sie ...

- · für die die Anwendungen die den Auslegungsvarianten zugrunde liegenden technischen Zusammenhänge erfassen
- · die für die Energieformen spezifischen Formeln anwenden um Energie, Leistung und Wirkungsgrad zu berechnen
- · verwendete Materialien, Katalysatoren und Ausführungsvarianten auswählen und Berechnungen zur Beurteilung der Effizienz für ausgewählte Anwendungsgebiete durchführen und bewerten

um dann damit ...

- · Aufgabenstellungen im Bereich der Energiespeicherung und Energieumwandlung in unterschiedlichen Bereichen wie z.B. Gewerbe, Produktion und Haustechnik erfolgreich bearbeiten zu können
- · den Einfluss variierender Betriebsparameter hinsichtlich der Effizienz und Wirtschaftlichkeit beurteilen zu können um somit den (kosten-) effizienten Einsatz von Energie zu gewährleisten
- · Energiespeicher und Brennstoffzellen anwendungsspezifisch auszuwählen und auszulegen

Lehrinhalte

Grundlagen aus dem Bereich Speicherung chemischer, elektrischer, potentieller, kinetischer und thermischer Energie, Grundlagen der Brennstoffzellen-Technologie, Elektrochemie, Katalyse, Materialkunde und Thermodynamik von Brennstoffzellen. Die Vorlesung wird auf Englisch gehalten.

Literatur

Vorlesungsmanuskript und ergänzendes Material Fachliteratur Rummich, E., Energiespeicher, Grundlagen, Komponenten, Systeme und Anwendungen, expert Verlag, 2009 Kurzweil, P.: Brennstoffzellentechnik, Springer, 2013 Zahoransky, R.A., Energietechnik, Vieweg Verlag, 2019

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
G. Illing	Energy Storage and Fuel Cells	4