Modulbezeichnung	Reaktionstechnik	
Semester	4	
ECTS-Punkte (Dauer)	6 (1 Semester)	
Art	Pflichtfach für CT	
Studentische Arbeitsbelastung	90 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO)	Physikalische Chemie Grundpraktikum, Grund- und Fortgeschrittenenpraktikum organische Chemie	
Empf. Voraussetzungen	Mathematik 1, 2, 3, Physikalische Chemie, Thermodynamik, Thermodynamik der Gemische	
Verwendbarkeit	BCTUT	
Prüfungsform und -dauer	Klausur 2h oder mündliche Prüfung	
Lehr- und Lernmethoden	Vorlesung, Übung	
Modulverantwortlicher	J. Hüppmeier	

Qualifikationsziele

Die Studierenden kennen grundlegende Methoden der Reaktionstechnik wie angewandte Stöchiometrie, Thermodynamik und Kinetik und können diese auf konkrete Reaktionssysteme anwenden. Sie kennen grundlegende thermodynamische und kinetische Modelle für die Berechnung von einfachen und komplexen Reaktionen. Die Studierenden können Massen- und Wärmebilanzen an idealen und realen Reaktoren in der homogenen Phase aufstellen. Die Studierenden sind in der Lage, Umsätze und Reaktionsvolumina idealer Reaktoren für einfache Reaktionen zu bestimmen. Sie kennen den Unterschied zwischen idealen und realen Reaktoren und können reale Reaktoren anhand der Verweilzeitverteilungen und dimensionsloser Kennzahlen beschreiben.

Lehrinhalte

Das Modul umfasst Grundlagen der Reaktionstechnik wie Stöchiometrie, Thermodynamik und Kinetik sowie die Berechnung von Reaktoren durch das Aufstellen von Massen- und Wärmebilanzen in einphasigen Systemen. Außerdem wird der Übergang von idealen Reaktoren zu realen Reaktoren gelehrt, die realen Reaktoren werden hinsichtlich Verweilzeitverteilung, dimensionsloser Kennzahlen und Segregation betrachtet.

Literatur

G. Emig, E. Klemm, Chemische Reaktionstechnik, Springer Verlag 2017

Lehrveranstaltungen		
Dozent	Titel der Lehrveranstaltung	sws
J. Hüppmeier	Reaktionstechnik (Vorlesung)	4
J. Hüppmeier	Reaktionstechnik (Übung)	2