

Modulhandbuch Studiengang Bachelor Nachhaltige Produktentwicklung im Maschinenbau

(PO 2023)

Hochschule Emden/Leer Fachbereich Technik Abteilung Maschinenbau

(Stand: 1. März 2024)

Inhaltsverzeichnis

1	Abkürzungen der Studiengänge des Fachbereichs Technik	3
2	Modulverzeichnis	4
	2.1 Pflichtmodule	 5
	Forecast und Produktinnovation	 5
	Konstuktion und Werkstoffe	
	Mechanik	
	Nachhaltiges Produkt für den Campus	
	Nachhaltigkeit und soziale Verantwortung	
	Dynamik	
	Fertigungstechnik und Arbeitsvorbereitung	11
	Nachhaltiges Produkt für Endkunden	
	Produkte konstruieren und beurteilen	
	Strukturbeschreibung und digitale Lösungsmethoden	
	Daten-Entstehung und -Nutzung im PLZ (durchgängiges Engineering)	
	Digitaler Schatten eines Produktionssystems	16
	Energie von Fluiden	
	Nachhaltiges Supply Chain Management einer Produktionsstufe	
	Nachhaltigkeitsberichterstattung und Kostenstrukturen	
	Bewertung und Optimierung eines Energiesystems	
	Erneuerbare Energien	
	Erneuerbare Energien	
	Messen und Steuern in der Energietechnik	
	Systeme zum Energie- und Stofftransport	
	Systeme zur Energie- und stoffdansport	
	Internationales Schwerpunktsemester	
	Internationales Schwerpunktsemester-Seminar	
	Datenanalyse und Maschinelles Lernen	
	Digitale Geschäftsmodelle und After Sales	
	Produktmanagement und Marketing	
	Smart Product	
	Steuerung von und mit smarten Produkten	
	Startup	
	Unternehmensplanspiel	
	Bachelorarbeit mit Kolloquium	 35

1 Abkürzungen der Studiengänge des Fachbereichs Technik

Abteilung Elektrotechnik und Informatik

BET Bachelor Elektrotechnik

BETPV Bachelor Elektrotechnik im Praxisverbund

BI Bachelor Informatik

BIPV Bachelor Informatik im Praxisverbund

BMT Bachelor Medientechnik

BOMI Bachelor Medieninformatik (Online)

BORE Bachelor Regenerative Energien (Online)

BOWI Bachelor Wirtschaftsinformatik (Online)

MII Master Industrial Informatics

MOMI Master Medieninformatik (Online)

Abteilung Maschinenbau

BIBS Bachelor Industrial and Business Systems

BMD Bachelor Maschinenbau und Design

BMDPV Bachelor Maschinenbau und Design im Praxisverbund

BNPM Bachelor Nachhaltige Produktentwicklung im Maschinenbau

MBIDA Master Business Intelligence and Data Analytics

MMB Master Maschinenbau

MTM Master Technical Management

Abteilung Naturwissenschaftliche Technik

BBT Bachelor Biotechnologie

BBTBI Bachelor Biotechnologie/Bioinformatik

BCTUT Bachelor Chemietechnik/Umwelttechnik

BEEEE Bachelor Erneuerbare Energien und Energieeffizienz

BEP Bachelor Engineering Physics

BEPPV Bachelor Engineering Physics im Praxisverbund

BNPT Bachelor Nachhaltige Prozesstechnologie

BNPTPV Bachelor Nachhaltige Prozesstechnologie im Praxisverbund

BSES Bachelor Sustainable Energy Systems

MALS Master Applied Life SciencesMEP Master Engineering Physics

MTCE Master Technology of Circular Economy

2	Modulverzeichnis

2.1 Pflichtmodule

Modulbezeichnung	Forecast und Produktinnovation
Modulbezeichnung (eng.)	Forecast and Product Innovation
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Kursarbeit
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: deutsch und englisch)
Modulverantwortliche(r)	E. Wings

Qualifikationsziele

Die Studierenden können die Bedarfe in einer nachhaltigen Welt identifizieren und als Eingangsgröße für die Produktentwicklung aufbereiten.

Lehrinhalte

WOMIT:

• in dem Sie wissenschaftliche Recherchen zu Technologieentwicklung und Marktanalyse, deskriptive Statistik anwenden und wissenschaftliche Berichte erstellen,

WOZU:

· um später Wertangebote einzuschätzen, Entscheidungen für die Produktentwicklung zu treffen und wissenschaftliche Arbeiten zu verfassen.

Literatur

Joos Korstanje: Advanced Forecasting with Python

Mark A Moon: Demand and Supply Integration, The Key to World-Class Demand Forecasting

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
E. Wings, A. Pechmann, K. Ottink	Forecast und Produktinnovation	4

Modulbezeichnung	Konstuktion und Werkstoffe
Modulbezeichnung (eng.)	Mechanical Design and Engineering Materials
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	E. Held

Die Studierenden können im Rahmen eines Produktentwicklungsprozesses ein Produkt konstruktiv gestalten und passende Werkstoffe auswählen, in dem Sie technische Darstellungen erstellen und dabei den Aufbau und die mechanisch-technologischen Eigenschaften von Werkstoffen berücksichtigen, um später eigenständig bedarfsgerechte und nachhaltige Produkte zu entwickeln.

Lehrinhalte

technische Zeichnungen erstellen und lesen, den Produktenstehungsprozess kennen und an einfachen Beispielen anwenden (Anforderungslisten erstellen, Methoden der Lösungsfindung und -bewertung), Recyclinggerechte Konstruktion, Aufbau und Eigenschaften von Werkstoffen (mechanische Eigenschaften), Korrosion, Materials Life Cycle, Eigenschaften und Umweltaspekte der unterschiedlichen Werkstoffgruppen, systematische Werkstoffauswahl unter Berücksichtigung von Nachhaltigkeitsaspekten um später eigenständig bedarfsgerechte und nachhaltige Produkte zu entwickeln.

Literatur

Hoischen, H.; Fritz, A.: Technisches Zeichnen, 34. Auflage, Cornelsen Scriptor, 2014; Callister W.: Materialwissenschaften und Werkstofftechnik Eine Einführung, 1. Auflage 2012; Wiley VCH; M.F. Ashby: Material Selection in Mechanical Design 5. Edition 2016, Butterworth -Heinemann

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
E. Held K. Ottink	Konstruktion und Werkstoffe	4
E. Held		

Modulbezeichnung	Mechanik
Modulbezeichnung (eng.)	Mechanics
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	E. Held

Die Studierenden können analytische die mechanischen Belastungen von Produkten berechnen,

Lehrinhalte

WOMIT:

· in dem Sie die (Elasto-)Statik, Lineare Algebra und Analysis anwenden,

WOZU:

· um später Produkte dimensionieren zu können.

Literatur

Hibbeler: Technische Mechanik 1, Verlag Pearson Studium, jeweils aktuellste Auflage Gross, Hauger, Schröder, Wall: Technische Mechanik 1 - Statik, Springer, jeweils aktuellste Auflage T. Arens u.a. Mathematik 5. Auflage 2022, Springer Spektrum

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Lünemann, F. Schmidt	Mechanik	4
M. Lünemann.		

Modulbezeichnung	Nachhaltiges Produkt für den Campus
Modulbezeichnung (eng.)	Sustainable Product to be used on Campus
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	10 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	120 h Kontaktzeit + 180 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Semesterprojekt NPM
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	K. Ottink

Die Studierenden können im Team ein mehrteiliges statisches Produkt entwerfen, zusammenbauen und dokumentieren,

Lehrinhalte

WOMIT:

• in dem Sie die mechanisch-technologischen Materialeigenschaften, die sich aus der Nutzung ergebenen mechanischen Anforderungen, die Anforderungen der Kreislaufwirtschaft, technische Regelwerke und Aspekte des Projektmanagement berücksichtigen,

WOZU:

• um im nächsten Semester dynamische Produkte entwerfen und im folgenden Studium komplexere Prozesse managen und durchführen zu können.

Literatur

Wittel, H. u.a.: Roloff/Matek Maschinenelemente: Normung, Berechnung, Gestaltung, 23. Auflage, Springer

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	
K. Ottink E. Held T. Schüning M. Lünemann A. Pechmann	Nachhaltiges Produkt für den Campus	
K. Ottink E. Held T. Schüning M. Lünemann		

Modulbezeichnung	Nachhaltigkeit und soziale Verantwortung
Modulbezeichnung (eng.)	Sustainability and and Social Responsibility
Semester (Häufigkeit)	1 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM, BEEEE
Prüfungsart und -dauer	Hausarbeit (25 Seiten)
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Ottink

Die Studierenden können Produkte im Produktlebenszyklus im Hinblick auf die 3 Säulen der Nachhaltigkeit - Ökologie, Ökonomie und Soziales - bewerten. Sie lernen Grundlagen des Lifecycle Assessments kennen, um diese in folgenden Semestern auf umfangreiche Projektaufgaben anwenden zu können. Die Studierenden kennen globale Nachhaltigkeitsziele, Gesetzgebungen und Richtlinien. Sie können ihr eigenes Konsum- und Arbeitsverhalten und erarbeitete Lösungen reflektieren und hinsichtlich der Nachhaltigkeit bewerten.

Lehrinhalte

Richtlinien, Gesetze und Nachhaltigkeitsziele erarbeiten, Eco Audit kennenlernen, LCA kennenlernen, Kennzahlen, Carbon Footprint, Nachhaltigkeitsmanagement, Kreislaufwirtschaft, Recycle/Reuse/Repair und z. B.. EU-Green Deal, SDG berücksichtigen und Informationen/Daten aus Datenbanken (z.B.. Ansys Granta EduPack) extrahieren, um Produkte im Produktlebenszyklus bezüglich der Nachhaltigkeit (S/U/W) zu bewerten und gestalten.

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
K. Ottink, T. Ebel, E. Held	Nachhaltigkeit und soziale Verantwortung	4

Modulbezeichnung	Dynamik
Modulbezeichnung (eng.)	Dynamics
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Mechanik
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	M. Graf

Die Studierenden sollen die Kinematik des Punktes und des starren Körpers verstanden haben und an entsprechenden Beispielen anwenden können. Sie sollen bei der Wahl des geeigneten Koordinatensystems richtig entscheiden können. Sie sollen die Gesetze der Kinetik der Punktmasse und des starren Körpers kennen. Sie sollen sich für den richtigen Lösungsansatz entscheiden und entsprechende Aufgaben lösen können.

Lehrinhalte

WOMIT:

Kinematik des Punktes und ebene Bewegung, geführte Bewegung und Zwangsbedingungen, Kinematik des starren Körpers, allgemeine ebene Bewegung, Translation und Rotation Kinetik der Punktmasse, Stoß, dynamisches Grundgesetz und Prinzip von D'Alembert, Impulssatz, Arbeitssatz, Energiesatz, Leistung und Wirkungsgrad, Kinetik des starren Körpers, Massenträgheitsmoment, Transformationsformeln für parallele Achsen, Kinetik von Mehrkörpersystemen, Zwangsbedingungen, Eigenfrequenzen und harmonische Anregung in ungedämpften linearen Systemen.

WOZU:

· um später bewegliche Produkte berechnen und auslegen zu können.

Literatur

Hibbeler: Technische Mechanik 3, Verlag Pearson Studium, jeweils aktuellste Auflage Gross, Hauger, Schröder, Wall: Technische Mechanik 3 - Kinetik, Springer, jeweils aktuellste Auflage

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Graf	Dynamik	4

Modulbezeichnung	Fertigungstechnik und Arbeitsvorbereitung	
Modulbezeichnung (eng.)	Manufacturing Technology and Work-Preparation	
Semester (Häufigkeit)	2 (jedes Sommersemester)	
ECTS-Punkte (Dauer)	5 (1 Semester)	
Art	Pflichtmodul	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO)		
Empf. Voraussetzungen	Konstruktion und Werkstoffe	
Verwendbarkeit	BNPM	
Prüfungsart und -dauer	Klausur 2 h oder mündliche Prüfung oder Hausarbeit (25 Seiten)	
Lehr- und Lernmethoden	Vorlesung	
Modulverantwortliche(r)	S. Lange	

Die Studierenden erstellen Arbeitspläne inklusive verwendeter Ressourcen

Lehrinhalte

WOMIT:

• in dem Sie technische und nachhaltigen Kriterien beachten, geeignete Fügeverfahren, Fertigungstechniken und-mittel auswählen sowie die Arbeitsaufwände (Umfang und Kosten) abschätzen

WOZU:

· um später die Produktionsplanung durchzuführen.

Literatur

Förster, R., Förster, A.: Einführung in die Fertigungstechnik, Springer Verlag, 2018

Koether, R., Sauer, A.: Fertigungstechnik für Wirtschaftsingenieure, Hanser-Verlag, 5. Auflg.

Risse, A.: Fertigungsverfahren der Mechatronik, Feinwerk- und Präzisionsgerätetechnik, Springer Verlag, 2012

Callister, W. u.a.: Materialwissenschaften und Werkstofftechnik - Eine Einführung, Wiley-Verlag, 2020 Grundlagen der Fügetechnik Bliedtner, J., Müller, H.: Lasermaterialbearbeitung Grundlagen - Verfahren - Anwendungen - Beispiele, Hanser-Verlag, 2013

Schweißen, Löten und Kleben DVS-Fachbücher, Band 161, DVS Media GmbH (Verlag), 2015

Dozenten/-innen	Titel der Lehrveranstaltung	sws
S. Lange, M. Lünemann	Fertigungstechnik und Arbeitsvorbereitung	4

Modulbezeichnung	Nachhaltiges Produkt für Endkunden
Modulbezeichnung (eng.)	Sustainable Product for End Users
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	10 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	120 h Kontaktzeit + 180 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Konstruktion und Werkstoffe Mechanik Nachhalt soziale Verantwortung Forecast und Produktinno
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Semesterprojekt NPM
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	M. Lünemann
	1

Die Studierenden können im Team ein mehrteiliges, bewegliches Produkt entwerfen, technisch auslegen, als digitales Modell dokumentieren und fertigen

Lehrinhalte

WOMIT:

• in dem Sie CAD Systeme nutzen, Werkstoffe festlegen, Normteile auswählen und projektbezogene Stücklisten erstellen, verschiedene Fertigungsverfahren und -mitel sowie Fügetechniken berücksichtigen und Arbeitspläne erstellen und digitale Schnittstellen anwenden,

WOZU:

· um später nachhaltige Produkte zu entwickeln und die dazugehörige Fertigung zu organisieren.

Literatur

Hoenow, G.; Meißner, Th.: Konstruktionspraxis Maschinenbau, Hanser Verlag, 5. Auflg.

Conrad, K.-J.: Grundlagen Konstruktionslehre, Hanser Verlag, 7. Auflg.

Pusch, A., Haverkamp, N.: 3D-Druck für Schule und Hochschule, Springer Verlag 2021

Dozenten/-innen	Titel der Lehrveranstaltung
M. Lünemann, T. Schüning, K. Ottink, A. Wilke, S. Lange, A. Pechmann	Nachhaltiges Produkt für Endkunden

Modulbezeichnung	Produkte konstruieren und beurteilen
Modulbezeichnung (eng.)	Mechanical Design and Evaluation of Products
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Mechanik, Konstruktion und Werkstoffe
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h oder mündliche Prüfung oder Hausarbeit (25 Seiten)
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	K. Ottink

Die Studierenden können Produkte im CAD System konstruieren und anlegen, sowie Zeichnungen und Stücklisten für das PLM ableiten und Produkteigenschaften überprüfen (messen),

Lehrinhalte

WOMIT:

· in dem Sie CAD Systeme, PLM, Produktentwicklungsmethoden, Messtechniken berücksichtigen,

WOZU:

um Produkte später eigenständig zu entwickeln, fertigen und durch digitales Engineering dokumentieren.

Literatur

Wittel, H. u.a.: Roloff/Matek Maschinenelemente: Normung, Berechnung, Gestaltung, 23. Auflage, Springer;

Feldhusen, J.; Grote, K.-H.: Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8. Auflage, 2013.

Naefe, P.: Einführung in das Methodische Konstruieren, 2. Auflage, Springer Vieweg, 2012.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
K. Ottink, A. Wilke, T. Ebel, J. Schwarz	Produkte konstruieren und beurteilen	4

Modulbezeichnung	Strukturbeschreibung und digitale Lösungsmethoden
Modulbezeichnung (eng.)	Describing Structures and Digital Problem Solving Methods
Semester (Häufigkeit)	2 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur (2 Stunden) oder Mündliche Prüfung oder Hausarbeit (25 Seiten)
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	E. Wings

Die Studierenden können technische Fragestellung strukturiert beschreiben und in mathematische Modell überführen und programmieren,

Lehrinhalte

WOMIT:

· in dem Sie objektorientierte Programmsprachen (Python/Java), mathematische Methoden (Analysis, Lineare Algebra, Numerik) verwenden,

WOZU:

• um später komplexe Probleme (u.a. Simulation von Produktionssystemen) numerisch lösen zu können.

Literatur

T. Arens u.a. Mathematik 5. Auflage 2022, Springer Spektrum

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
E. Wings, E. Held	Strukturbeschreibung und digitale Lösungsmethoden	4

Modulbezeichnung	Daten-Entstehung und -Nutzung im PLZ (durchgängiges Engineering)
Modulbezeichnung (eng.)	Data Creation and Usage in the PLC (Continuous Engineering)
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	(Unterrichtssprache: deutsch und englisch)
Modulverantwortliche(r)	A. Pechmann

Die Studierenden können geeignete Daten-haltung- und Kommunikationstools für entstehende und benötigte Daten entlang des Produktlebenszyklus anwenden.

Lehrinhalte

WOMIT:

• indem Sie mithilfe des Prinzips des durchgängigen Engineering kennen, auf Basis der technischen Notwendigkeiten (z.b. Datenhaltung, -verwendete Standards und Werkzeuge) entsprechen Daten entsprechend extrahieren, transformieren und ablegen

WOZU:

• um benötigte Daten für alle am PLZ beteiligten Akteure zur Verfügung zu stellen und damit auch rechtlichen Anforderungen hinsichtlich Produktinformationen (z.B. Entstehung, verwendete Materialien, Versionierung, Nutzung, Änderungen etc.) auch im Zuge der Kreislaufwirtschaft zu genügen.

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
A. W. Colombo	Daten-Entstehung und -Nutzung im PLZ (durchgängiges Engineering)	4

Modulbezeichnung	Digitaler Schatten eines Produktionssystem
Modulbezeichnung (eng.)	Digital Shadow of a Production System
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	10 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	120 h Kontaktzeit + 180 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Semesterprojekt NPM
Lehr- und Lernmethoden	
Modulverantwortliche(r)	A. Pechmann

Die Studierenden können im Team einen digitalen Schatten (/Model) eines einfachen, realen Produktionssystems (Transformation von physikalischem Input in Output über mehrere Bearbeitungsvorgänge) als Entscheidungsgrundlage erstellen

Lehrinhalte

WOMIT:

• in dem Sie die Anforderungen und Ziele für den Zweck erheben, ein dem Zweck angepasstes reduziertes Model von dem realen System mit den notwendigen Material- und Datenflüssen sowie Indikatoren erstellen und in einer Simulationsumgebung simulieren und dynamisch visualisieren

WOZU:

• um später Systeme teilweise oder ganz erheben, analysieren, visualisieren und Stakeholderangepasste Rückmeldungen zur Optimierung auch unter Nachhaltigkeitsaspekten geben zu können.

Literatur

Anylogic in 3 days, aktuelle Literatur zum Thema Digitaler Schatten, Unterlagen des Moodle-Kurs 'Fischertechnik-Lernfabrik'

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungA. Pechmann, A.W. Colombo, M. Lünemann, E. Wings, A. Dietzel, H. WeitzDigitaler Schatten eines Produktionssystems

Modulbezeichnung	Energie von Fluiden
Modulbezeichnung (eng.)	Power of Fluids
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h oder Mündliche Prüfung
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	O. Böcker

Die Studierenden können die Bewegung und die sich daraus ergebenden Kräfte von fluidischen Energieträgern verstehen sowie die energetischen Zustände und Änderungsprozesse quantitativ beschreiben.

Lehrinhalte

WOMIT: In dem Sie

- · die energetische Grundbegriffe und die relevanten Eigenschaften von Flüssigkeiten und Gasen kennen lernen.
- · die strömungsmechanische und thermodynamische Funktionen von Maschinen und Systemen in Modelle überführen und
- · die Änderungen der Druck, Temperatur, Geschwindigkeit etc. (Zustandsgrößen) sowie Energien berechnen

WOZU:

• um im 4. Semester in die Analyse und Optimierung von Energiesystemen einsteigen zu können, und im beruflichen Umfeld das benötigte Schnittstellenwissen für die Kommunikation mit Experten zu besitzen.

Literatur

Keine Panik vor Thermodynamik, Dirk Labun, 6. Auflage 2012, SpringerVieweg.

Strybny, J.: Ohne Panik Strömungsmechanik, 5. Auflage, Vieweg+Teubner, Wiesbaden, 2012.

Böswirth, L.: Technische Strömungslehre, 12. Auflage, Springer Fachmedien, Wiesbaden, 2021.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
O. Böcker, C. Jakiel	Energien von Fluiden	4

Modulbezeichnung	Nachhaltiges Supply Chain Management einer Produktionsstufe
Modulbezeichnung (eng.)	Sustainable Supply Chain Management of a Production Stage (Production Planning and Control)
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: deutsch und englisch)
Modulverantwortliche(r)	A. Pechmann

Die Studierenden können für eine Produktionsstufe benötigte Ressourcen planen, beschaffen und steuern

Lehrinhalte

WOMIT:

• in dem sie die für die Auftragsabwicklung benötigten und in den Arbeitsplänen definierten Ressourcen termin- und mengenmäßig einplanen, nach verschiedenen Verfahren optimieren und die notwendigen Inputmaterialien beschaffen sowie den anschließenden Transformationsprozess steuern

WOZU:

• um einen benötigten Output unter Beachtung der Nachhaltigkeit zu realisieren sowie optimieren zu können.

Literatur

Steven Chapman: Fundamentals of PPC

Schönsleben, Paul: Integrales Logistikmanagement - Operations and Supply Chain Management innerhalb des Unternehmens und unternehmensübergreifend

Dozenten/-innen	Titel der Lehrveranstaltung	sws
A. Pechmann, H. Weitz	Nachhaltiges Supply Chain Management einer Produktions- stufe	4

Modulbezeichnung	Nachhaltigkeitsberichterstattung und Kostenstrukturen
Modulbezeichnung (eng.)	CSRD and Cost Structures
Semester (Häufigkeit)	3 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	A. Pechmann

Die Studierenden kennen zum einen die wesentlichen Aspekte und Entwicklungen der Nachhaltigkeitsberichterstattung in Abhängigkeit von wesentlichen Einflussgrößen (z.B. Unternehmensgröße, Branche) und können insbesondere für die Berichterstattung Kosten gemäß betriebswirtschaftlicher Kostenstrukturen aufstellen und analysieren,

Lehrinhalte

WOMIT:

• in dem Sie sich in Grundlagen der Nachhaltigkeitsberichterstattung und betriebswirtschaftlichen Kostenarten und - strukturen und ihrer Anwendung im Controlling einarbeiten und in Fallbeispielen z.B. für die Entwicklung und Herstellung von Produkten die für die Berichterstattung wesentlichen Daten benennen und bereitstellen.

WOZU:

• um einen benötigten Output unter Beachtung der Nachhaltigkeit zu realisieren sowie optimieren zu können.

Literatur

D. Remer (2005). Einführen der Prozesskostenrechnung, Schäffer-Poeschel

J. Horsch (2015). Kostenrechnung: Klassische und neue Methoden in der Unternehmenspraxis, Springer Gabler

Dozenten/-innen	Titel der Lehrveranstaltung	sws
K. Henkel; O. Passenheim	Nachhaltigkeitsberichterstattung und Kostenstrukturen	4

Modulbezeichnung	Bewertung und Optimierung eines Energiesystems
Modulbezeichnung (eng.)	Evaluation and Optimization of an Energy System
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	10 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	120 h Kontaktzeit + 180 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Semesterprojekt NPM
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	C. Jakiel

Die Studierenden können im Team ein Energiesystem (Anlage mit Energieumwandlungsprozessen und ggf. Speicherung) hinsichtlich Effizienz und weiterer Nachhaltigkeitskriterien bewerten sowie Optimierungsmöglichkeiten erarbeiten; bzw. selbst ein einfaches Energiesystem beispielhaft auslegen, das die Anforderungen einer nachhaltigen industriellen Gesellschaft erfüllt.

Lehrinhalte

WOMIT: Indem sie

- · die relevanten Prozesse zur Energieumwandlung qualitativ und quantitativ nachvollziehen, und dabei Möglichkeiten zur Modellbildung beispielhaft nutzen,
- technische Realisierungsmöglichkeiten von Umwandlungs- und Speicherprozessen auswählen und spezifizieren,
- · sowie Nachhaltigkeits- und Sicherheitskriterien heranziehen.

WOZU:

• Um im Rahmen des weiteres Studiums bzw. im beruflichen Umfeld die vielfältig auftretenden energetische Prozesse bewerten zu können, sowie in Produkten und Produktionssystemen den Energiefluss nachhaltig gestalten zu können.

Literatur

Watter, H.: Regenerative Energiesysteme, 6. Aufl., Springer Fachmedien, Wiesbaden, 2022. Unger, J. et al.: Alternative Energietechnik, 6. Aufl., Springer Fachmedien, Wiesbaden, 2020.

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSO. Böcker, I. Herráez, C. Jakiel, A. PechmannBewertung und Optimierung eines Energiesystems8

Modulbezeichnung	Erneuerbare Energien
Modulbezeichnung (eng.)	Renewable Energies
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Energie von Fluiden
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h oder Mündliche Prüfung oder Hausarbeit (25 Seiten)
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)
Modulverantwortliche(r)	I. Herraez

Die Studierenden können das Potenzial und die Einsatzmöglichkeiten verschiedener Arten von erneuerbaren Energien (Windenergie, Solarenergie, Biomasse, Geothermie und Wasserkaft) bewerten sowie die Hauptkomponenten regenerativer Energieanlagen auslegen.

Lehrinhalte

WOZU: In dem sie

- · mit der Verfügbarkeit und Haupteigenschaften der erneuerbaren Energiequellen vertraut sind,
- · ihrer Kenntnisse aus den Grundlagenfächern anweden und verschiedener Methoden der Energietechnik anwenden,
- $\cdot\,$ analytische Werkzeuge für die Auslegung von Komponenten anwenden.

WOMIT:

· Damit sie sich aktiv an der Gestaltung von Projekten im Bereich der erneuerbaren Energien einbringen können.

Literatur

Volker Quaschning, Understanding Renewable Energy Systems, Earthscan, 2016

Lehrveranstaltun	iaen
------------------	------

Dozenten/-innen	Titel der Lehrveranstaltung	sws
NN	Erneuerbare Energien	4

Modulbezeichnung	Erneuerbare Energien
Modulbezeichnung (eng.)	Renewable Energies
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	Energie von Fluiden
Verwendbarkeit	BNPM, BIBS
Prüfungsart und -dauer	Klausur 2 h oder Mündliche Prüfung oder Hausarbeit (25 Seiten)
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)
Modulverantwortliche(r)	I. Herraez

Die Studierenden können das Potenzial und die Einsatzmöglichkeiten verschiedener Arten von erneuerbaren Energien (Windenergie, Solarenergie, Biomasse, Geothermie und Wasserkaft) bewerten sowie die Hauptkomponenten regenerativer Energieanlagen auslegen.

Lehrinhalte

WOZU: In dem sie

- · mit der Verfügbarkeit und Haupteigenschaften der erneuerbaren Energiequellen vertraut sind,
- · ihrer Kenntnisse aus den Grundlagenfächern anweden und verschiedener Methoden der Energietechnik anwenden,
- · analytische Werkzeuge für die Auslegung von Komponenten anwenden.

WOMIT:

· Damit sie sich aktiv an der Gestaltung von Projekten im Bereich der erneuerbaren Energien einbringen können.

Literatur

Volker Quaschning, Understanding Renewable Energy Systems, Earthscan, 2016

Dozenten/-innen	Titel der Lehrveranstaltung	sws
NN	Erneuerbare Energien	4

Modulbezeichnung	Messen und Steuern in der Energietechnik
Modulbezeichnung (eng.)	Measurement and Control in Energy Systems
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Portfolio
Lehr- und Lernmethoden	Vorlesung und Praktikum
Modulverantwortliche(r)	C. Jakiel

Die Studierenden können geeignete Messgeräte zur Erfassung physikalischer Daten sowie Aktoren auswählen, und mit passender Datenerfassungshardware und erstellter Software zu einem funktionierenden Gesamtsystem kombinieren.

Lehrinhalte

WOMIT: Indem sie,

- · basierend auf dem Verständnis der Funktionsprinzipien von Sensoren und Aktoren sowie von Datenerfassungsgrundsätzen,
- · Sensoren und Aktoren auswählen, testen,
- · und an einer Hardware zur Datenerfassung anschließen,
- · sowie, nach dem Erlernen eines Programmiersystems zur Messdatenerfassung und Steuerung,
- eigene Softwaremodule erstellen und mit der Mess-Hardware einsetzen.

WOZU:

• Zum einen als Grundlage für die Themenbereiche digitale Steuerung und Numerik im 6. Semester, sowie die Erweiterung des persönlichen 'Werkzeugkastens' zur Lösung ingenieurmäßiger Fragestellungen im weiteren Studium oder beruflichen Umfeld.

Literatur

Hesse/Schnell: Sensoren für die Prozess- und Fabrikautomation, Springer Fachmedien, Wiesbaden, 2018. Georgi, W.: Einführung in LabVIEW, 6. Aufl., Hanser, München, 2015.

I eh	rvera	nstal	tunc	ien
rell	ııveıa	ııstaı	Lulic	1611

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Lünemann, S. Setz	Messen und Steuern in der Energietechnik	4

Modulbezeichnung	Systeme zum Energie- und Stofftransport
Modulbezeichnung (eng.)	Systems for Energy and Mass Transfer
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung
Modulverantwortliche(r)	O. Böcker

Die Studierenden können Prozesse der Wärmenutzung evaluieren und dazugehörige Apparate auslegen.

Lehrinhalte

WOMIT:

• Indem sie, basierend auf den Methoden der Thermo- u. Fluiddynamik, Wärmeübergangsprozesse beschreiben und bewerten sowie analytische Werkzeuge für die funktionale Dimensionierung von Apparaten für dem Wärme- und Stofftransport anwenden können.

WOZU:

• Damit Sie den Wärmehaushalt energieintensiver Produkte analysieren sowie Wärmetauscher und -speicher für komplexe Energiesysteme bewerten bzw. spezifizieren und integrieren können.

Literatur

Marek, R.: Praxis der Wärmeübertragung, 3. Auflage, Hanser-Verlag 2012.

Wagner, W.: Festigkeitsberechnungen im Apparate- und Rohrleitungsbau, 9. Auflage, Vogel Business Media, Würzburg, 2018.

Wagner, W. / HTT (Hrsg.): Wärmeaustauscher; 5. Aufl.; Vogel Business Media, Würzburg; 2015.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
O. Böcker	Wärmeübertragung (Heat Transfer)	2
C. Jakiel	Apparatebau (Apparatus Engineering)	2

Modulbezeichnung	Systeme zur Energieumwandlung
Modulbezeichnung (eng.)	Energy Conversion Systems
Semester (Häufigkeit)	4 (jedes Sommersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)
Modulverantwortliche(r)	C. Jakiel

Die Studierenden können geeignete Energiewandlungsmaschinen hinsichtlich Energiequelle und Zielanwendung auswählen und unter Berücksichtigung technischer, ökonomischer und ökologischer Randbedingungen in ihren relevanten Kenngrößen auslegen.

Lehrinhalte

WOMIT:

• Indem sie, basierend auf den Methoden der Thermo- u. Fluiddynamik, und mit dem Verständnis der Funktionsprinzipien von Fluidenergiemaschinen, betriebliche Kennzahlen bestimmen und Einsatzgrenzen prüfen, sowie analytische Werkzeuge für die funktionale Dimensionierung der Maschinen und zur Bestimmung von Performance und Effizienz anwenden.

WOZU:

• Damit Sie bei der Bewertung und Optimierung von komplexen Energieanlagen und Produktionssystemen geeignete Komponenten auswählen und integrieren sowie Schnittstellenklärungen durchführen können.

Literatur

Bohl, W. / Elmendorf. W.: Strömungsmaschinen 1 - Aufbau und Wirkungsweise, 11. Auflage, Würzburg: Vogel Verlag, 2012.

Merker, G.: Grundlagen Verbrennungsmotoren, Springer Verlag 2018.

Dozenten/-innen	Titel der Lehrveranstaltung	sws
C. Jakiel	Strömungsmaschinen (Turbomachinery)	2
O. Böcker	Kolbenmaschinen (Piston Type Engines)	2

Modulbezeichnung	Internationales Schwerpunktsemester
Modulbezeichnung (eng.)	International Specialization Semester
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	28 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	0 h Kontaktzeit + 840 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	- Auslandssemester: Nach Vorgabe der ausländischen Hochschule - Auslandspraktikum: Bericht
Lehr- und Lernmethoden	- Seminar - Nach Vorgabe der ausländischen Hochschule
Modulverantwortliche(r)	I. Herraez

Die Studierenden sammeln internationale Erfahrungen, vertiefen ihre Fremdsprachenkenntnisse und setzen eigene Interessenschwerpunkte aus dem Bereich der Ingenieurwissenschaften. Darüber hinaus lernen sie neue Lehrformen kennen bzw. wenden die erworbenen Kenntnisse und Fähigkeiten in der industriellen und wirtschaftlichen Praxis an.

Lehrinhalte

WOMIT:

· Indem Sie ein Auslandssemester an einer ausländischen Partnerhochschule absolvieren oder ein Praxissemester an einer im Ausland ansässige Institution ablegen.

WOZU:

• Damit sie über die erforderlichen Fähigkeiten, Kenntnisse und Kompetenzen für die Arbeit in einem internationalen Umfeld verfügen.

Literatur

	Lehi	rveranstaltungen
Dozenten/-innen		Titel der Lehrveranstaltung
	Auslandssemester- bzw. Auslandspraktikumbeauftragte	Internationales Schwerpunktsemester

Modulbezeichnung	Internationales Schwerpunktsemester-Seminar
Modulbezeichnung (eng.)	International Specialization Semester Seminar
Semester (Häufigkeit)	5 (jedes Wintersemester)
ECTS-Punkte (Dauer)	2 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	15 h Kontaktzeit + 45 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Portfolio
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	I. Herraez

Die Studierenden bekommen einen Einblick in die Erfahrungen anderer Studierender während ihres internationalen Schwerpunktsemesters und können über ihre eigenen gesammelten Erkenntnisse und Erfahrungen mündlich und schriftlich einer breiten Zielgruppe klar und präzise berichten.

Lehrinhalte

WOMIT:

· Indem sie ein Poster anfertigen und ihre Erfahrungen in einer Präsentation vorstellen.

WOZU:

• Damit sie die Chancen und Herausforderungen eines Auslandsaufenthalts kennen und auf eine international ausgerichtete Karriere vorbereitet sind.

Literatur

H. Hering und K.G. Heyne: Technische Berichte: Verständlich gliedern, gut gestalten, überzeugend vortragen. Springer Vieweg, 2019.

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
I. Herraez	Internationales Schwerpunktsemester-Seminar	2

Modulbezeichnung	Datenanalyse und Maschinelles Lernen	
Modulbezeichnung (eng.)	Data Analysis and Machine Learning	
Semester (Häufigkeit)	6 (jedes Sommersemester)	
ECTS-Punkte (Dauer)	5 (1 Semester)	
Art	Pflichtmodul	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO) 13. Semester		
Empf. Voraussetzungen		
Verwendbarkeit	BNPM	
Prüfungsart und -dauer Kursarbeit		
Lehr- und Lernmethoden	Seminaristische Vorlesung (Unterrichtssprache: englisch)	
Modulverantwortliche(r)	odulverantwortliche(r) E. Wings	

Studierende können aus der Datenflut einen Segen machen und Big Data hinsichtlich Volumen, Vielfalt und Geschwindigkeit sammeln, speichern, analysieren und modellieren.

Lehrinhalte

WOMIT:

• Um aus Daten Erkenntnisse zu gewinnen, verwenden Sie den Prozess des Data Science, und Data Mining, Data Analytics und Machine Learning als dessen Bestandteile.

WOZU:

• Basierend auf Daten optimieren Sie Business Management Systeme, insbesondere wenn Sie die Arbeit an und mit Daten in die Geschäftsprozesse zur operativen und strategischen Entscheidungsunterstützung integrieren.

Literatur

Joel Grus: Data Science from Scratch - First Principles with Python

Joshi, Ameet V, Machine Learning and Artificial Intelligence. Springer (2020)

Datenschutz-Grundverordnung (DSGVO)

Jörg Frochte: Maschinelles Lernen Grundlagen und Algorithmen in Python. Hanser Verlag, 2020

Dozenten/-innen	Titel der Lehrveranstaltung	sws
E. Wings	Datenanalyse und Maschinelles Lernen	4

Modulbezeichnung	Digitale Geschäftsmodelle und After Sales	
Modulbezeichnung (eng.)	Digital Business Models and After Sales	
Semester (Häufigkeit) 6 (jedes Sommersemester)		
ECTS-Punkte (Dauer)	5 (1 Semester)	
Art	Pflichtmodul	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO)		
Empf. Voraussetzungen		
Verwendbarkeit	BNPM	
Prüfungsart und -dauer	Hausarbeit (50 Seiten)	
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)	
Modulverantwortliche(r)	M. Blattmeier	

Die Studierenden können digitale Geschäftsmodelle gestalten und im spezifischen Kontext bewerten.

Lehrinhalte

WOMIT:

• Sie nutzen (1) verschiedene Modelldesigns, (2) Prozesse für die wirtschaftliche Bewertung und der User-Bewertung mittels Prototypenentwicklung sowie (3) Kernressourcen des UX-Designs und der Informatik.

WOZU:

• Das Wissen um digitale Geschäftsprozesse und -modelle hilft den Studierenden schließlich, nicht nur das Kerngeschäft mit digitalen Technlogien zu erweitern, sondern vielmehr auch ein digitales Innovationsmanagement zu implementieren.

Literatur

C. Hoffmeister (2022). Digital Business Modelling: digitale Geschäftsmodelle verstehen, designen, bewerten, Hanser

M. Bodemann (2022) Digitalisierung und Nachhaltigkeit - Transformation von Geschäftsmodellen und Unternehmenspraxis, Springer

LehrveranstaltungenDozenten/-innenTitel der LehrveranstaltungSWSM. BlattmeierDigitale Geschäftsmodelle und AfterSales4

Modulbezeichnung	Produktmanagement und Marketing	
Modulbezeichnung (eng.)	Product Management and Marketing	
Semester (Häufigkeit)	6 (jedes Sommersemester)	
ECTS-Punkte (Dauer)	5 (1 Semester)	
Art	Pflichtmodul	
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium	
Voraussetzungen (laut BPO)		
Empf. Voraussetzungen		
Verwendbarkeit	BNPM	
Prüfungsart und -dauer	Hausarbeit (50 Seiten)	
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)	
Modulverantwortliche(r)	M. Blattmeier	

Die Studierenden können Marketingkonzepte bewerten, die im Hinblick auf eine human-centricity nicht nur den Kunden, sondern vielmehr den Menschen in den Mittelpunkt des unternehmerischen Handelns stetzen.

Lehrinhalte

WOMIT:

• Sie brücksichtigen hierfür die Möglichkeiten der digitalen Technologien insbesondere die individuelle Erfahrungen im Sinne einer Customer Experience und die Service-Dominant Logic, die ein Denken in Netzwerken und Ökosystemen vorschlägt und die Co-Creation von Werten einbezieht.

WOZU:

• Dies ermöglicht ihnen, Marketing als ein Instrument für die ganzheitliche Entwicklung menschlicher Gesellschaften und für sinnvolle lebensfähige Unternehmen zu verstehen.

Literatur

H. Meffert et al. (2019). Marketing, Grundlagen marktorientierter Unternehmensführung, Konzepte-Instrumente-Praxisbeispiele, Springer Gabler

Dozenten/-innen	Titel der Lehrveranstaltung	sws
M. Blattmeier	Produktmanagement und Marketing	4

Modulbezeichnung	Smart Product
Modulbezeichnung (eng.)	Smart Product
Semester (Häufigkeit)	6 (jedes Sommersemester)
ECTS-Punkte (Dauer)	10 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	120 h Kontaktzeit + 180 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Semesterprojekt NPM
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	M. Blattmeier

Studierende entwerfen, projektieren und fertigen smarte Produkte im Team, einschließlich einer Automatisierung in der Praxis.

Lehrinhalte

WOZU:

· Sie nutzen verschiedene Methoden der Modularisierung, der Modellierung und der digitalen Projektierung zusätzlich neben dem Wissen über Sensorik, Aktorik und den M2M-Kommuniktionstechnologien.

WOMIT:

• Damit sammeln die Studierenden praktische Erfahrungen, die es ihnen ermöglichen, smarte Produkte modular entstehen zu lassen und diese individualisiert anzuwenden bzw. in einer digitalisierten Produktion zu betreiben.

Literatur

S. Meinhardt, F. Wortmann (2021). IoT-Best Practices, Internet der Dinge, Geschäftsmodellinnovationen, IoT-Plattformen, IoT in Fertigung und Logistik

Lehrveranstaltui	ngen

Dozenten/-innen	Titel der Lehrveranstaltung	SW
M. Blattmeier, E. Wings, A. W. Colombo, A. Pechmann	Smarter Product	8

Modulbezeichnung	Steuerung von und mit smarten Produkten
Modulbezeichnung (eng.)	Control of and with Smart Products
Semester (Häufigkeit) 6 (jedes Sommersemester)	
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Klausur 2 h
Lehr- und Lernmethoden	Vorlesung (Unterrichtssprache: englisch)
Modulverantwortliche(r)	E. Wings

Studierende können smarte Produkte, deren mechanische Elemente und Services analysieren, planen und steuern.

Lehrinhalte

WOMIT:

• Technologien der M2M-Kommunikation (Machine-to-Machine) sowie eingebettete Sensorik und Aktorik stehen ihnen für die digitale Veredelung von Produkten zur Verfügung.

WOZU:

· Dies ermöglicht es den Studierenden, sowohl smarte Produkte für den Endkunden als auch deren Fertigung in einer smarten Fabrik zu gestalten.

Literatur

Lehrveranstaltungen		
Dozenten/-innen	Titel der Lehrveranstaltung	sws
E. Wings, A. W. Colombo	Steuerung von und mit smarten Produkten	4

Modulbezeichnung	Startup
Modulbezeichnung (eng.)	Start up
Semester (Häufigkeit)	7 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Berufspraktische Übung
Lehr- und Lernmethoden	Seminar
Modulverantwortliche(r)	A. Pechmann

Die Studierenden können in kleinen Teams Bewerbungsunterlagen für die Finanzierung, z.B. einen Antrag für die Finanzierung im Rahmen des Exist-Gründerstipendium für Studierende erarbeiten und präsentieren.

Lehrinhalte

WOMIT:

· in dem Sie für einen realen oder fiktiven Fall die benötigten Unterlagen (Marktanalyse, Finanzierung etc.) zusammenstellen

WOZU:

· um später die Abhängigkeiten für eine eigene Unternehmensgründung einschätzen zu können.

Literatur

Lehrveranstaltungen				
Dozenten/-innen	Titel der Lehrveranstaltung	sws		
Hr. Neeland, EGZ	Startup	4		

Modulbezeichnung	Unternehmensplanspiel
Modulbezeichnung (eng.)	Business Game
Semester (Häufigkeit)	7 (jedes Wintersemester)
ECTS-Punkte (Dauer)	5 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 90 h Selbststudium
Voraussetzungen (laut BPO)	
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Berufspraktische Übung
Lehr- und Lernmethoden	(Unterrichtssprache: deutsch und englisch)
Modulverantwortliche(r)	A. Pechmann

Die Studierenden können im Team mit verteilten Rollen und Verantwortlichkeiten in einem kompetitiven, dynamischen Marktumfeld sich für zu treffende Entscheidungen eine Informationsgrundlage schaffen und die Auswirkungen ihrer getroffenen Entscheidungen bewerten.

Lehrinhalte

WOMIT:

 In dem Sie über einen Zeitraum hinweg wiederholt die für ihre jeweilige Unternehmensrolle entsprechenden sinnvollen Daten digital abgebildeter und virtuell ablaufender integrierten Geschäftsprozesse abrufen, digital aufbereiten und darauf basierende Entscheidungen mittels Standardtransaktionen in das verwendete ERP-System (SAP S4HANA) überführen und die Auswirkungen analysieren

WOZU:

• um später komplexe Geschäftsprozesse im Gesamtkontext von Unternehmen und ihrem Umfeld verstehen und einordnen können und effizient nachhaltige Entscheidungen treffen können.

Literatur

Aktuelle Unterlagen zum Planspiel

Dozenten/-innen	Titel der Lehrveranstaltung	sws
A. Pechmann, H. Weitz	Unternehmensplanspiel	4

Modulbezeichnung	Bachelorarbeit mit Kolloquium
Modulbezeichnung (eng.)	Bachelor Thesis with Colloquium
Semester (Häufigkeit)	7 (nach Bedarf)
ECTS-Punkte (Dauer)	12 (1 Semester)
Art	Pflichtmodul
Studentische Arbeitsbelastung	60 h Kontaktzeit + 390 h h Selbststudium
Voraussetzungen (laut BPO)	alle Module des 16. Semesters
Empf. Voraussetzungen	
Verwendbarkeit	BNPM
Prüfungsart und -dauer	Mündliche Präsentation und schriftliche Dokumentation
Lehr- und Lernmethoden	Bachelorarbeit
Modulverantwortliche(r)	T. Schüning

Die Studierenden können in größeren Teams für eine benannte, unternehmenstypische Problemstellung eine Lösung bzw. ein Produkt entwickeln und dem Auftraggeber (z.B. regionale Organisationen) anbieten

Lehrinhalte

WOMIT:

• in dem Sie die erworbenen Kenntnisse des Studiums anwenden, insbesondere sich in Teams organisieren, die Aufgabenstellung strukturieren und nachhaltige Lösungen erarbeiten

WOZU:

· um die später benötigten Kompetenzen einzusetzen und nachzuweisen, um die gewonnen Erfahrungen für die Gesellschaft nutzbringend einzusetzen.

Literatur

Nach Thema verschieden

Lehrveranstaltungen					
Dozenten/-innen	Titel der Lehrveranstaltung	sws			
Professor*innen der Abteilung Maschinenbau	Bachelorarbeit	-			